

Junior Balkan MO 2003

Kusadasi, Turkey

11 Let n be a positive integer. A number A consists of $2 n$ digits, each of which is 4 ; and a number B consists of n digits, each of which is 8 . Prove that $A+2 B+4$ is a perfect square.

2 Suppose there are n points in a plane no three of which are collinear with the property that if we label these points as $A_{1}, A_{2}, \ldots, A_{n}$ in any way whatsoever, the broken line $A_{1} A_{2} \ldots A_{n}$ does not intersect itself. Find the maximum value of n.

Dinu Serbanescu, Romania
3 Let D, E, F be the midpoints of the arcs $B C, C A, A B$ on the circumcircle of a triangle $A B C$ not containing the points A, B, C, respectively. Let the line $D E$ meets $B C$ and $C A$ at G and H, and let M be the midpoint of the segment $G H$. Let the line $F D$ meet $B C$ and $A B$ at K and J, and let N be the midpoint of the segment $K J$.
a) Find the angles of triangle $D M N$;
b) Prove that if P is the point of intersection of the lines $A D$ and $E F$, then the circumcenter of triangle $D M N$ lies on the circumcircle of triangle $P M N$.

4 Let $x, y, z>-1$. Prove that

$$
\frac{1+x^{2}}{1+y+z^{2}}+\frac{1+y^{2}}{1+z+x^{2}}+\frac{1+z^{2}}{1+x+y^{2}} \geq 2 .
$$

Laurentiu Panaitopol

